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» Neural networks with very simple architectures can be proven to be universal
function approximators [1]

— Such simple networks are in theory sufficient to solve arbitrary tasks

» However, customizing the network architecture can be beneficial to achieve faster
convergence

P Symmetries in the input data can lead to customized networks that are as
expressive as the original one

» We investigate how symmetries can be exploited to find suitable network
architectures

P Consider a function f : A — B which satisfies the symmetry f(x) =
some family of functions g, : A — A with A € A
— f is fully determined through its restriction on the equivalence classes
x] =1y € Alf(x) = f(y); = {&n(x) | A € A}
» To train a neural network to mimic f, it would be sufficient to train it on the
equivalence classes and exploit the symmetry afterwards

f(gx(x)) for

P This approach is usually infeasible, as representatives of an equivalence class are
hard to define and the training data would have to be transformed to their
corresponding representatives first

» The simplest building block for neural network architectures is the dense layer
between N; input features ¢, and N, output features 1), defined by
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with ae€ {1,...,N;} and b € {1,...

P A possible network architecture would then be

, N,} and scalar weights w,y,
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This network architecture does not use any insights into the specific problem,
therefore a lot of weights (6454860) are necessary

» We do have some prior knowledge: Regardless of where the digit is written within
the image, it should be recognized in the same way
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P This can be used in the network architecture by using using convolutional layers:
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where x and y denote coordinates within the image, a is the number of input
channels and b is the number of output channels

» Convolutional layers satisfy translational invariance (up to boundary terms)
P This leads to architectures like
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By exploiting translational symmetry in the network architecture, the number of
weights is drastically reduced to 21030

P Both networks have the same expressivity
» We can now compare their Log-Likelihood loss during training:
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P Better network architecture leads to faster convergence due to reduced number
of weights

P Lattice QCD discretizes space-time on a grid, 2D example

wich can be used to perform numerical simulations R« T N &
P A quark field on the lattice is defined as | A A
: Loscloscloxl.x4%3 spin-and \, (\
an object € R=*Fy 52Xt %%3 “ywhere
_ _ color-vector A
the different sizes are: ~ v ov | Ly
Ly, L, L,, L lattice sizes in all four 2 ) T .
space-time directions + oA
~ 4: spin degrees of freedom RdR g
S

~ 3: color degrees of freedom L,

» One of the most computationally expensive steps in many lattice QCD
calcaulations is the solution of the discretized Dirac equation [2]

D=
where 1 and ¢ are quark fields and D is a discretized Dirac operator (linear)
P To accelerate the solution of the Dirac equation, one can use preconditioners [3],
i.e. an operator M which satisfies DM ~ 1
» Using M, the Dirac equation can be reformulated as

(DM)x = ¢ with Y = My
which is easier to solve if MD has a smaller condition number than D
» We want to find such a preconditioner M using neural networks

~ Approach 1 — Brute force:

» Without further knowledge, we can simply use a sequence of dense layers to
learn a preconditioner

» Every layer has one quark field as an input and one quark field as an output
= (4 x 3 x LL,L,L;)* weights per layer

~ Approach 2 — Utilize symmetries:

» While we do not have simple translational symmetry in this case, the
network should be gauge-equivariant under gauge transformations, which
leads to the symmetry

DT, = T,Dvy
where T, is a parallel transport of the field along path p ;
» Define a Iocal parallel-transport-

convolution (PTC) layer [2] as T TN
, , ° Tp> ® y
= S: S: w?(x)p Tpp”(x) 0 """"""" -y W
b paths p B
» The parallel transports act on the color space T

= (9 x 4 x L,L,L,L;)* weights per layer if we use all nearest-neighbor paths
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P Faster convergence even though number of parameters is larger!

P Symmetries are often found within data used to train neural networks

P Incorporating symmetries into the network architecture can reduce the number of
parameters without reducing expressivity

P Networks obeying symmetry in the data can train more efficiently as the
symmetry does not have to be learned
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