
Exploiting symmetries to achieve fast model convergence
Simon Pfahler1, Tilo Wettig1

1Department of Physics, University of Regensburg

Summary

Neural networks with very simple architectures can be proven to be universal
function approximators [1]
⇒ Such simple networks are in theory sufficient to solve arbitrary tasks
However, customizing the network architecture can be beneficial to achieve faster
convergence
Symmetries in the input data can lead to customized networks that are as
expressive as the original one
We investigate how symmetries can be exploited to find suitable network
architectures

Motivation

Consider a function f : A → B which satisfies the symmetry f (x) = f (gλ(x)) for
some family of functions gλ : A → A with λ ∈ Λ

⇒ f is fully determined through its restriction on the equivalence classes
[x] = {y ∈ A | f (x) = f (y)} = {gλ(x) |λ ∈ Λ}

To train a neural network to mimic f , it would be sufficient to train it on the
equivalence classes and exploit the symmetry afterwards
This approach is usually infeasible, as representatives of an equivalence class are
hard to define and the training data would have to be transformed to their
corresponding representatives first

Introductory example: digit recognition

The simplest building block for neural network architectures is the dense layer
between Ni input features ϕa and No output features ψb, defined by

ψa =
∑

b
wabϕb

with a ∈ {1, . . . ,Ni} and b ∈ {1, . . . ,No} and scalar weights wab
A possible network architecture would then be

reshape
28 × 28 784 3610 1000 10

This network architecture does not use any insights into the specific problem,
therefore a lot of weights (6454860) are necessary
We do have some prior knowledge: Regardless of where the digit is written within
the image, it should be recognized in the same way

original transformed

shift

This can be used in the network architecture by using using convolutional layers:
ψa

x ,y =
∑

b

∑
δx ,δy

w ab
δxδy
ϕb

x+δx ,y+δy

where x and y denote coordinates within the image, a is the number of input
channels and b is the number of output channels
Convolutional layers satisfy translational invariance (up to boundary terms)
This leads to architectures like

reshape1×
28 × 28

10×
19 × 19

10×
10 × 10

10×
1 × 1 10

By exploiting translational symmetry in the network architecture, the number of
weights is drastically reduced to 21030
Both networks have the same expressivity
We can now compare their Log-Likelihood loss during training:

1 5 10 15

10−1

100

training epoch

Lo
g-

Li
ke

lih
oo

d
los

s dense network
convolutional network

Better network architecture leads to faster convergence due to reduced number
of weights

Real-world example: Preconditioners in lattice QCD

Lattice QCD discretizes space-time on a grid,
wich can be used to perform numerical simulations
A quark field on the lattice is defined as
an object ϕ ∈ RLx×Ly×Lz×Lt×4×3, where
the different sizes are:

Lx , Ly , Lz, Lt: lattice sizes in all four
space-time directions
4: spin degrees of freedom
3: color degrees of freedom

One of the most computationally expensive steps in many lattice QCD
calcaulations is the solution of the discretized Dirac equation [2]

Dψ = ϕ

where ψ and ϕ are quark fields and D is a discretized Dirac operator (linear)
To accelerate the solution of the Dirac equation, one can use preconditioners [3],
i.e. an operator M which satisfies DM ≈ 1

Using M, the Dirac equation can be reformulated as
(DM)χ = ϕ with ψ = Mχ

which is easier to solve if MD has a smaller condition number than D
We want to find such a preconditioner M using neural networks

Approach 1 – Brute force:
I Without further knowledge, we can simply use a sequence of dense layers to

learn a preconditioner
I Every layer has one quark field as an input and one quark field as an output

⇒ (4 × 3 × LxLyLzLt)
2 weights per layer

Approach 2 – Utilize symmetries:
I While we do not have simple translational symmetry in this case, the

network should be gauge-equivariant under gauge transformations, which
leads to the symmetry

DTpψ = TpDψ
where Tp is a parallel transport of the field along path p

I Define a local parallel-transport-
convolution (PTC) layer [2] as

ψa(x) =
∑

b

∑
paths p

w ab(x)pTpϕ
b(x)

I The parallel transports act on the color space
⇒ (9 × 4 × LxLyLzLt)

2 weights per layer if we use all nearest-neighbor paths

100 200 300 400 500

10−6

10−5

10−4

training iteration

M
SE

los
s

dense network
gauge-equivariant network

Faster convergence even though number of parameters is larger!

Takeaway messages

Symmetries are often found within data used to train neural networks
Incorporating symmetries into the network architecture can reduce the number of
parameters without reducing expressivity
Networks obeying symmetry in the data can train more efficiently as the
symmetry does not have to be learned

References

[1] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are uni-
versal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.

[2] C. Lehner and T. Wettig. “Gauge-equivariant neural networks as preconditioners in lattice QCD”.
In: Phys. Rev. D 108 (3 Aug. 2023), p. 034503.

[3] A. J. Wathen. “Preconditioning”. In: Acta Numerica 24 (2015), pp. 329–376.

Supported by the German Academic Scholarship Foundation and the Marianne-Plehn Programme Correspondence: simon.pfahler@ur.de

Scan for digital version

ϕ

Tpϕ

ψ

Tp wp

2D example

Lt

Lx

spin- and
color-vector

spin- and
color-vector

http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1103/PhysRevD.108.034503
http://dx.doi.org/10.1017/S0962492915000021
mailto:simon.pfahler@ur.de
https://simon-pfahler.github.io/permanent/Seminar_Mathematik_des_maschinellen_Lernens/poster_MML.html
https://simon-pfahler.github.io/permanent/Seminar_Mathematik_des_maschinellen_Lernens/poster_MML.html

	References

