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Summary
• In cancer progression, the rate of occurence

of genetic events depends on the state of a

tumor

•Mutual Hazard Networks infer promoting and

inhibiting effects between genetic events

from patient data

•Splitting the events in a dataset into clusters

allows us to infer approximate MHNs for

hundreds of events, overcoming a major

runtime limitation of MHN

•Investigating the obtained clusters can

give valuable input into the under-

lying biology, e.g. the role that

different events play in cancer

progression
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Mutual Hazard Networks [1]

•Cancer progresses by accumulating genetic events

•This progression can be modeled as a Markov chain

with transition rates

Qx+i ,x = Θi i

d∏
xj=1

Θi j

•Patient data of observed tumors define a probabil-

ity distribution pD

Parameters Θ can be infered by comparing to the

time-marginalized probability distribution

pΘ = (I−Q)−1p0
via the log-likelihood (LL)

•Exact calculation of pΘ is limited to under 25 active

events per patient due to runtime behavior

base rate
of event i

influence of
event j on event i

initial distribution contains
only healthy patients

rate to acquire event i

Θ matrix

A B C D E F

A 2 .3 4 1 1 1.5

B .3 1 .5 1 1 1

C 5 2 1 1 .4 1

D 1 1 1 1.5 4 .2

E 1 1 .5 3 2 .1

F 3 1 1 2 .2 1

max(| logΘi j |, | logΘj i |)

Distance matrix

A B C D E F

A ∞ .8 .6 ∞ ∞ .9

B .8 ∞ 1.4 ∞ ∞ ∞
C .6 1.4 ∞ ∞ 1.1 ∞
D ∞ ∞ ∞ ∞ .7 .6

E ∞ ∞ 1.1 .7 ∞ .4

F .9 ∞ ∞ .6 .4 ∞

Clustering algorithm
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Clustering
•Cancer progression is widely assumed to be

weakly modular [2]

Perform calculations on smaller clusters

and combine results in the end

•To estimate Θi j , we need a cluster with <25

events, containing both i and j

•We use hierarchical clustering [3] to obtain

possibly overlapping clusters
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Validation
To validate our method using artificial datasets

and MHNs with 80 events, we check:

1.Gradient approximation accuracy

2.Accuracy of learned MHNs

biological results
MSK-CHORD [4] data of 5907 LUADs, trained on 125 genetic events

strongest 30 connections shown
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Learning Process
•To infer MHNs from patient data, we can

utilize the structure found by our clustering:

1. Start at independence model, i.e. Θi 6=j = 1

2.For every parameter Θi j : Get gradients of

the LL score by considering a cluster

containing events i and j

3.Get new parameters Θ through one optimizer

step

•The clusters used to calculate gradients adapt

throughout the optimization process to

fit the data

Next steps
• Investigate choice of distance measure

analytically and define it to minimize
‖gexact−gapprox‖
‖gexact‖

•Obtain an approximation of the score along

with the gradient approximation

•Consider different clustering strategies

Spectral clustering is of particular interest, as first

tests showed promising results on graphs obtained

from MHNs

• Investigate biological interpretability of clusters

further
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