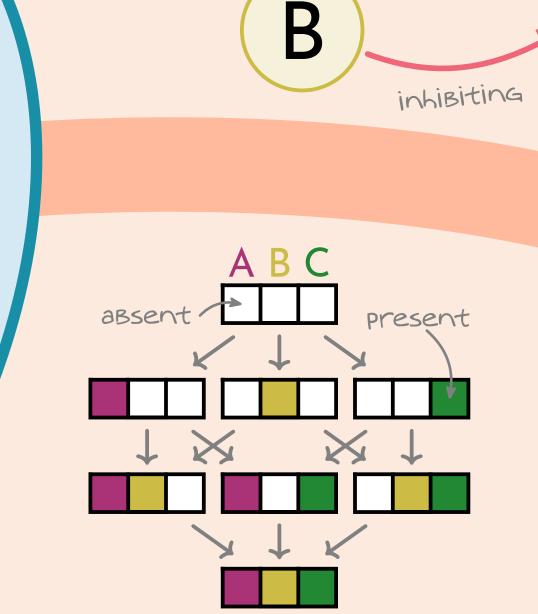
Exploiting weak modularity in cancer progression to infer large Mutual Hazard Networks

A

Simon Pfahler¹, Leon Ernstberger¹, Peter Georg¹, Andreas Lösch², Rudolf Schill³, Lars Grasedyck⁴, Rainer Spang², Tilo Wettig¹ ¹ Department of Physics, University of Regensburg, ² Faculty of Informatics and Data Science, University of Regensburg, ³ Department of Biosystems and Engineering, ETH Zürich, ⁴ Institute for Geometry and Applied Mathematics, RWTH Aachen

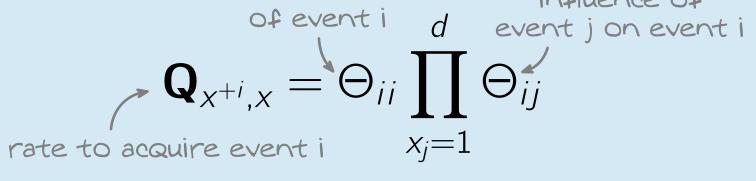
Studienstiftung des deutschen Volkes

 In cancer progression, the rate of occurence of genetic events depends on the state of a


Mutual Hazard Networks [1]

Cancer progresses by accumulating genetic events

• This progression can be modeled as a Markov chain with transition rates Base rate


- tumor
- Mutual Hazard Networks infer promoting and inhibiting effects between genetic events from patient data
- Splitting the events in a dataset into clusters allows us to infer approximate MHNs for hundreds of events, overcoming a major runtime limitation of MHN
- Investigating the obtained clusters can give valuable input into the underlying biology, e.g. the role that different events play in cancer

progression

Clustering

- Cancer progression is widely assumed to be weakly modular [2]
- → Perform calculations on smaller clusters and combine results in the end
- To estimate Θ_{ij} , we need a cluster with <25 events, containing both *i* and *j*

- Patient data of observed tumors define a probability distribution $\mathbf{p}_{\mathcal{D}}$
- \rightarrow Parameters Θ can be inferred by comparing to the time-marginalized probability distribution
 - $\mathbf{p}_{\Theta} = (\mathbf{I} \mathbf{Q})^{-1} \mathbf{p}_{0}$ only healthy patients

influence of

via the log-likelihood (LL)

A B C D

1 1 .5 3

A 2 .3 4

C 5

Ε

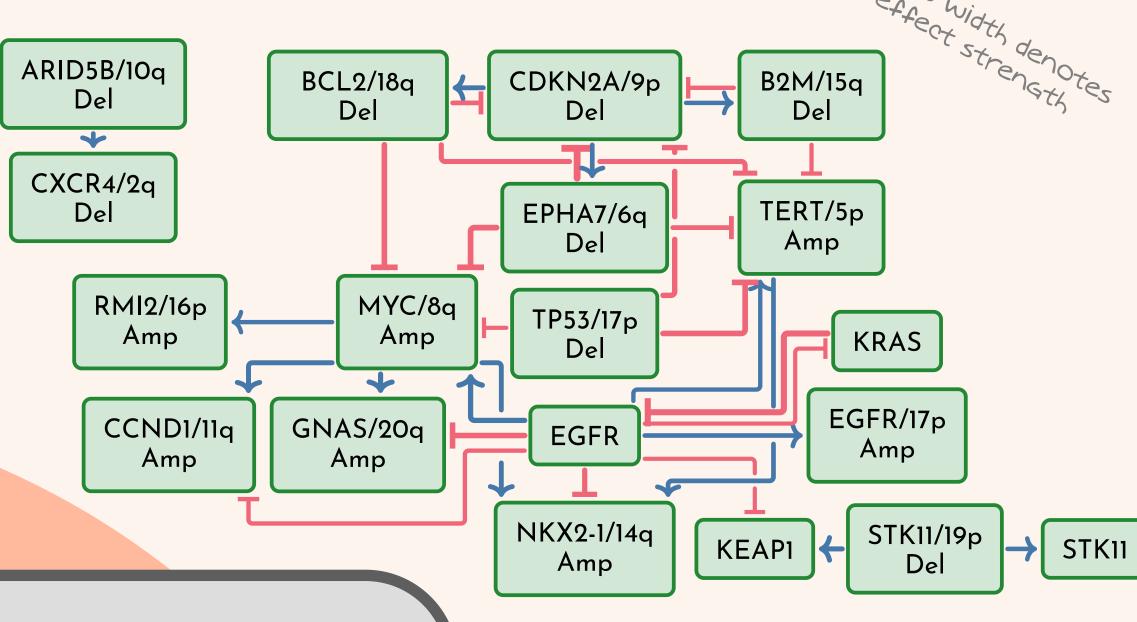
• Exact calculation of \mathbf{p}_{Θ} is limited to under 25 active events per patient due to runtime behavior

						T	Dist	tan	ce	Ma	tri	×
Θ matrix							Α	В	С	D	Е	F
В	С	D	Ε	F		A	∞	.8	.6	∞	∞	.9
.3	4	1	1	1.5		В	.8	∞	1.4	∞	∞	\propto
1	.5	1	1	1	$\max(\log \Theta_{ij} , \log \Theta_{ji})$	С	.6	1.4	∞	∞	1.1	\propto
2	1	1	.4	1		D	∞	∞	∞	∞	.7	.6
1	1	1.5	4	.2		Е	∞	∞	1.1	.7	∞	.4
1	.5	3	2	.1		F	.9	∞	∞	.6	.4	\propto
	B .3 1 2 1	 B C .3 4 1 .5 2 1 1 1 	BCD.3411.5121111.5	BCDE.34111.511211.411.54	BCDEF	B C D E F .3 4 1 1 1.5 1 .5 1 1 1 $\max(\log \Theta_{ij} , \log \Theta_{ji})$ 2 1 1 .4 1 1 1.5 4 .2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ egin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B C D E F A ∞ .8 .6 ∞ .3 4 1 1 1.5 B .8 ∞ 1.4 ∞ 1 .5 1 1 1 $\max(\log \Theta_{ij} , \log \Theta_{ji})$ C .6 1.4 ∞ ∞ 1.1 2 1 1 .4 1 \longrightarrow D ∞ ∞ ∞ 7 1 1.5 4 .2 E ∞ 1.1 .7 ∞

Clustering algorithm

B

Learning Process

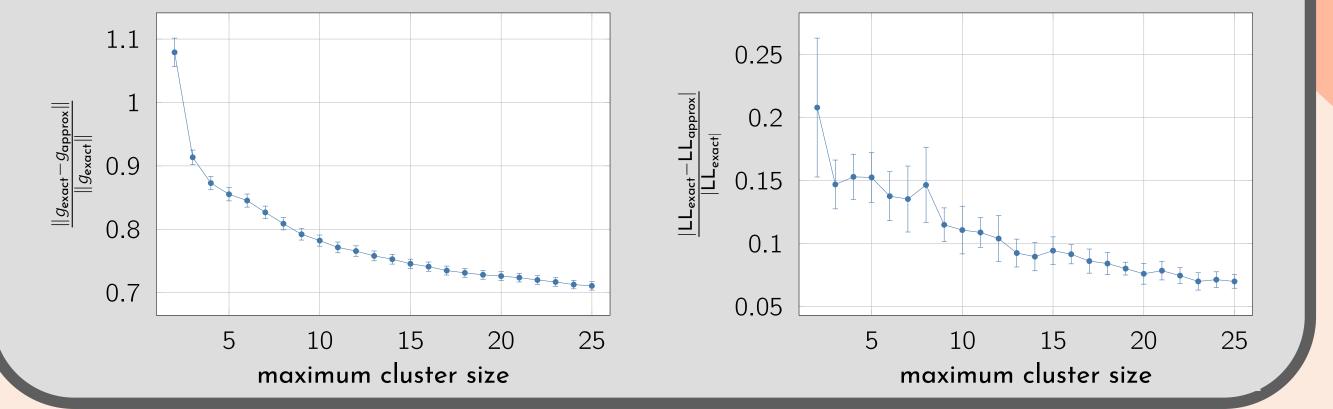

- To infer MHNs from patient data, we can utilize the structure found by our clustering:
- 1. Start at independence model, i.e. $\Theta_{i\neq j} = 1$
- 2. For every parameter Θ_{ij} : Get gradients of the LL score by considering a cluster containing events *i* and *j*
- 3. Get new parameters Θ through one optimizer step
- The clusters used to calculate gradients adapt throughout the optimization process to fit the data

• We use hierarchical clustering [3] to obtain 2 F 3 possibly overlapping clusters

Biological results

MSK-CHORD [4] data of 5907 LUADs, trained on 125 genetic events

strongest 30 connections shown



Validation

To validate our method using artificial datasets and MHNs with 80 events, we check:

1. Gradient approximation accuracy

2. Accuracy of learned MHNs

References

1. Schill, R. et al. in Research in Computational Molecular Biology (2024). 2. Iranzo, J., Gruenhagen, G., Calle-Espinosa, J. & Koonin, E. V. Cell Reports 40 (2022). 3. Rokach, L. & Maimon, O. in Data Mining and Knowledge Discovery Handbook (2005). 4. Jee, J. et al. Nature 636 (2024).

Next steps

 Investigate choice of distance measure analytically and define it to minimize $\|g_{\mathsf{exact}} - g_{\mathsf{approx}}\|$ $||g_{exact}|$ Obtain an approximation of the score along with the gradient approximation Consider different clustering strategies - Spectral clustering is of particular interest, as first tests showed promising results on graphs obtained from MHNs

 Investigate biological interpretability of clusters further