Exploiting weak modularity in cancer progression
to infer large Mutual Hazard Networks
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Mutual Hazard Networks I

e Cancer progresses by accumulating genetic events

 This progression can be modeled as a Markov chain

e In cancer progression, the rate of occurence with transition rates +
Base rate
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e Splitting the events in a dataset into clusters C 1N\ + Parameters © can be infered by comparing to the
allows us to infer approximate MHNs for ] time-marginalized probability distribution
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via the log-likelihood (LL)

e Investigating the obtained clusters can [

e Exact calculation of pg is limited to under 25 active

give valuable input into the under-

events per patient due to runtime behavior

lying biology, e.g. the role that

different events play in cancer

Clustering

e Cancer progression is widely assumed to be
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weakly modular [2]

»> Perform calculations on smaller clusters
and combine results in the end

* To estimate ©;;, we need a cluster with <25
events, containing both / and |

* We use hierarchical clustering [3] to obtain

possibly overlapping clusters

Learning Process

e To infer MHNs from patient data, we can
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utilize the structure found by our clustering:
MSK-CHORD [4] data of 5907 LUADs, trained on 125 genetic events
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Validation

To validate our method using artificial datasets
and MHNs with 80 events, we check:

Next steps

1. Gradient approximation accuracy . . .
e Investigate choice of distance measure

2.Accuracy of learned MHNs
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e Obtain an approximation of the score along
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with the gradient approximation

e Consider different clustering strategies

> Spectral clustering is of particular interest, as first
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tests showed promising results on graphs obtained

from MHNs

* Investigate biological interpretability of clusters
further
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