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Summary

When working on high-dimensional data, approximations are often necessary to
keep calculations tracktable
This can be problematic when probabilities are involved, as these approximations
can lead to small negative entries in the approximation of probability vectors
Existing approaches are either problem-specific or computationally expensive
Our method [1] improves on this by providing a generic approach to this problem
that does not come with a computational overhead

Problem statement

The Kullback-Leibler (KL) divergence for two discrete probability distributions p
and q is defined as [2]

DKL(p‖q) =
n∑

i=1
pi log

pi
qi

p and q are often given by the probability distributions of the data and the model
Approximations in the calculation of q can lead to negative entries qi < 0
⇒ KL divergence is no longer well-defined

shifted KL divergence

Idea: shift the entries of q such that the shifted entries are positive and the
logarithm is well-defined
Many important properties of the KL divergence have to be preserved, in
particular the resulting function still has to be a statistical divergence
⇒ To achieve this, the probability vector p also has to be shifted
Definition of the shifted Kullback-Leibler (sKL) divergence:

DsKL(p‖q) =
n∑

i=1
(pi + εi) log

pi + εi
qi + εi

This introduces a parameter vector ε ∈ Rn
≥0

The sKL divergence is now well-defined for qi > −εi
Regardless of the choice of ε, the sKL divergence satisfies important properties:

DsKL is a statistical divergence for p and q that satisfy
∑n

i=1 pi =
∑n

i=1 qi
DsKL is convex in the pair of its arguments

Usefulness highly depends on the choice of the parameters
Simplest choice: constant vector ε

Makes usage of DsKL in higher-order optimizers possible
Not useable in most realistic cases (e.g. Gaussian noise)
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Plot of the KL and sKL
divergence of probability
vector p = (0.2, 0.8) from
q = (q1, 1 − q1). For the
sKL divergence, εi = 0.05
was chosen for i = 1, 2.

Dynamic parameter choice

Dynamically choosing ε after p and q are known is usually a better option
Define a function f : R≥0 → R≥0 and choose

εi =

{
0 , pi = 0 or qi > 0 ,
|qi| + f (|qi|) , else

Ensures that DsKL(p‖q) is well-defined regardless of the values in q
A nonzero εi is only introduced when needed, resulting in a small difference
between the KL and sKL divergences
For exact probability distributions p and q and a vector x of i.i.d. Gaussian
random variables with mean 0 and standard deviation σ, the average of the sKL
divergence is given by〈

DsKL(p‖q + x)
〉

x = DKL(p‖q) + σ2
n∑

i=1

pi

2q2
i
+O(σ4)

This formula remains true for a large class of different noise distributions
In the following, we use the simple choice

f (x) = δ · x
with parameter δ = 10 (arbitrary choice, similar results are obtained with other
choices of f )
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Application: Mutual Hazard Networks [3]

Real-world application: Cancer progression modeling
Cancer progresses by accumulating genetic
events, so tumors are represented by binary
vectors x ∈ {0, 1}d

Progression is modeled as a Markov chain
with transition rates

Qx+i ,x = eθii

d∏
xj=1

eθij

parameterized by a matrix θ ∈ Rd×d

The time-marginalized probability distribution of tumors is given by
qθ = (I − Q)−1q∅

with initial distribution q∅ = (1, 0, . . .)
The relationship (inhibition/promotion) between events is given by θ, which can
be obtained by minimizing the distance between pθ and a patient data
distribution pD
Problem: For & 25 possible events, optimization is prohibitively slow due to the
exponential increase in size of x and Q

Approximations are needed to enable calculations with more events
We use the tensor-train format to approximate the high-dimensional tensor pθ

Approximation quality is controlled through the tensor-train rank r
Comparison to exact calculation is possible for small enough number of events

Application: Results

We used d = 20 events, so results can be compared to the exact solution
The sKL divergence with approximations is used during optimization, KL
divergence is used for evaluation
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