» When working on high-dimensional data, approximations are often necessary to

keep calculations tracktable

P This can be problematic when probabilities are involved, as these approximations

can lead to small negative entries in the approximation of proba
P Existing approaches are either problem-specific or computationa

» Our method [1] improves on this by providing a generic approac
that does not come with a computational overhead

ility vectors

n to this problem P Approximations in the calculation of q can lead to negative entries g; < 0
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ly expensive » p and q are often given by the probability distributions of the data and the model

— KL divergence is no longer well-defined

P The Kullback-Leibler (KL) divergence for two discrete probability distributions p
and q is defined as [2]

P |dea: shift the entries of q such that the shifted entries are positive and the

logarithm is well-defined

P Define a function f : R>qg — R>( and choose

» Many important properties of the KL divergence have to be preserved, in
particular the resulting function still has to be a statistical divergence
— To achieve this, the probability vector p also has to be shifted

P Definition of the shifted Kullback-Leibler (sKL) divergence:
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» The sKL divergence is now well-defined for g; > —¢;
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Dk is convex in the pair of its arguments

P Usefulness highly depends on the choice of the parameters
P Simplest choice: constant vector ¢

~ Makes usage of Dk in higher-order optimizers possible
~ Not useable in most realistic cases (e.g. Gaussian noise)
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P A nonzero ¢; is only introduced when needed, resulting in a small difference
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» Dynamically choosing € after p and q are known is usually a better option
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+ f(|qgi|), else

-defined regardless of the values in g

between the KL and sKL divergences

P For exact probability distributions p and g and a vector x of i.i.d. Gaussian
random variables with mean 0 and standard deviation o, the average of the sKL

divergence is given by

Regardless of the choice of €, the sKL divergence satisfies important properties:
D\ is a statistical divergence for p and q that satisfy > " . p;=> ", q;

(Dr(plla + x)), = Dxi(plla) + o
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P In the following, we use the simple choice
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This formula remains true for a large class of different noise distributions
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P Real-world application: Cancer progression modeling

» We used d = 20 events, so results can be compared to the exact solution

» Cancer progresses by accumulating genetic

033
events, so tumors are represented by binary /ix

vectors x € {0,1}¢ B
» Progression is modeled as a Markov chain i l«éezzeem
with transition rates Q?
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parameterized by a matrix § € R9*¢
» The time-marginalized probability distribution of tumors is given

@ =(1-Q) 'qz
with initial distribution qz = (1,0, .. .)
P The relationship (inhibition/promotion) between events is given
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by 6, which can r = approximation quality

be obtained by minimizing the distance between py and a patient data

distribution pp

» Problem: For =25 possible events, optimization is prohibitively slow due to the

exponential increase in size of x and Q

Approximations are needed to enable calculations with more events

We use the tensor-train format to approximate the high-dimensional tensor py
Approximation quality is controlled through the tensor-train rank r 3]
Comparison to exact calculation is possible for small enough number of events
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» The sKL divergence with approximations is used during optimization, KL

divergence is used for evaluation approx., r = 16
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