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Problem
statement

Bigger picture
» Lattice QCD calculations are
expensive

» One of the most expensive parts is
solving the Dirac equation

» Preconditioners can accelerate this

Preconditioners
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State of the art:

algebraic multigrid (AMG)
But AMG needs costly setup
Can this setup be avoided?

Goal: Preconditioner competitive
with AMG, but with very little (or
even no) setup

PN
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Status quo

Previous work Shortcomings
» Exploratory studies with different » Focus on preconditioning the high
kinds of Machine Learning modes
models [1,2]
» Multigrid coarse grid solver and » expensive AMG setup is still needed

smoother were reformulated in a
learnable way [3]

» Prolongation and restriction » no generalization to unseen
operators were translated into ML configurations
language [4]

[1] S. Cali et al., PRD 107, 034508 (2023)

[2] Y. Sun et al., arXiv:2509.10378 [hep-lat] (2025)
[3] C. Lehner and T. Wettig, PRD 108, 034503 (2023)
[4] C. Lehner and T. Wettig, PRD 110, 034517 (2024) 2/15
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Gauge
equivariance

» Gauge-equivariant transport of information
between adjacent lattice sites:
hop operator

Hpp(x) = U} (x — pi)p(x — p7)

» Combining multiple hops leads to parallel
transports T, along a path p

» weighted linear combinations of parallel
transports are gauge-equivariant

d
p
X
5
(]
T, = HiHoHs

N

3/15






Network \!j

Architecture

Dense linear (L) layer

» n spin-color fields
© c (CLXXLyXLzXLtXNCXNs

» build m linear combinations of the
input fields, with spin matrices
Wj; € CNsxNs s weights:

ilx) = Z Wijpj(x)
=1

Parallel Transport (PT) layer

» n spin-color fields
© c CLxxLnyzthchst

» apply a different parallel transport
p() to every input field:

vi(x) 2 T pi(x)
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Architecture
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Choice of g

PT paths

» 1-hop paths:
P = {Hplp € {£1,£2,43,+4}}
» long straight paths:

P = {Hp|p € {£1,42,+3,+4},
ne {2021 ... L/2}}
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Choice of S

PT paths

—— unpreconditioned — MG

8 layers (1-hop) 8 layers (long)
» 1-hop paths: 16 layers (1-hop) 16 layers (long)

1072

P = {Hplp € {£1,£2,43,+4}} .
= 10~

» long straight paths: Z

& 1076 8% x 16 lattice

P = {Hp|p € {£1,42, 43, +4}, Rt s

_g N =10
ne {2021, ... L/2}} 1075, 5000 10,000 15,000 20,000

Operator applications
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function

» Standard choice:
C =|IMDyp — o||?
with random field ¢
» Filtered cost function:
C = |MDg - |°

where @ is obtained through N
iterations of GMRES for Dy = 0
with random initial guess
= Stronger emphasis on the
low modes!

Operator applications

104

103

—— unpreconditioned — MG
—4 layers 8 layers
— 12 layers 16 layers

N/

Filter iteration count N

83 X 16 lattice

Q=1

m = —0.555
0 5 10 15 20
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Gauge

configurations
83 x 16 ensemble!: 163 x 32 ensemble?:
» Wilson action » Wilson action
» quenched, heat bath » quenched, HMC
» Wilson-clover Dirac operator » Wilson-clover Dirac operator
» configurations with topological » configurations with topological
charge |Q| € {0,1,2} charge |Q| € {0,4}

! doi.org/10.5281 /zenodo.15018324
2 doi.org/10.5281 /zenodo.17494829 8/15
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Training
cost

IMD& — |2

100

——4 layers  —— 8 layers
——12 layers —— 16 layers
T T
Ol M a0t i i 68 16 tttice

B ' Q=1
[ m = —0.555
L | | ! | N =10
0 200 400 600 800 1,000

Training iteration

9/15



Iteration
—— unpreconditioned & MG

count 3
gain? ?Q|X—lg —4-4 layers 8 layers
- —4-12 layers 16 layers
104
(%2}
S
= 103 &
;E \\‘*‘N\’\‘\*
102 —M

-059 -058 -057 -056 -055 -054 -0.53

bare mass parameter
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Critical

sIowing 3 % unpreconditioned 4 MG
down 8" x10 —4- 4 layers 8 layers
Q=0 —4-12 layers 16 layers
licati f: 2
applications of: 5 10*
> Dfine -'r_t;
L
» PT layer a
o
(4]
S
© 103
[0}
o
o

-059 -058 -057 -056 —-055 -054 -0.53
bare mass parameter
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Critical

sIowing & % 16 % unpreconditioned 4% MG
—4-4 layers 8 layers

down Q=1 —4-12 layers 16 layers
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2 104
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—0.56 —0.55 —0.54 —0.53

bare mass parameter
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Critical

sIowing 8 % 16 —— unpreconditioned 4% MG
—4-4 layers 8 layers
win _
do QI =2 —4-12 layers 16 layers
£ 10*
.°
g
o
o
(o]
S
= 103
o}
o
@)

—0.59 —0.58 —0.57 —0.56 —0.55 —0.54

bare mass parameter
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Critical

sIowing 16°% x 32 % unpreconditioned 4 MG
down 8 —4- 4 layers 8 layers
Q=0 —4-12 layers 16 layers

(2]

c

L 10*

g
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© 103

[0}

o
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—0.565 —0.56 —0.555 —0.55

bare mass parameter
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Critical

sIowing 163 x 32 -4 anpreconditioned - 2A|G
down Q| = 4 44 layers ayers
- —4-12 layers 16 layers
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Transfer

trained and
applied on .
3 % unpreconditioned <4 MG
8” x 16 -4 layers 8 layers
Q=1 —4-12 layers 16 layers
all m
a2 2
2 10
g
o
® y
S
4’5 103 k—_/\\'\’\‘
o] o
o o—Ro o— N
—0.56 —0.55 —0.54 —0.53

bare mass parameter
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Transfer

trained on applied on

—%— unpreconditioned 4 MG

3 3

8% x 16 o 8% x 16 —%- 4 layers 8 layers
Q=0 Q=1 —4- 12 layers 16 layers
m = —0.56 all m

g

2 10

g

a

[o

(o9}

S

® 103

] =

(@] o—Fo o— <

—0.56 —0.55 —0.54 —0.53

bare mass parameter
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Transfer

trained and
applied on
3 % unpreconditioned <4 MG
167 > 32 -4 layers 8 layers
|Q!|: 0 —4-12 layers 16 layers
all m

104 F

103

Operator applications

—0.56 —0.55

bare mass parameter
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Transfer

trained on applied on

—%— unpreconditioned 4 MG

3 3
8 x 16 o 167 x 32 % 4 layers 8 layers
QI=0 Q=0 —4- 12 layers 16 layers
m = —0.56 all m

10*

103

Operator applications

—0.56 —0.55

bare mass parameter
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Conclusion

Goals Next steps

« Build a preconditioner using ML~ » Understand why the architecture
that mitigates critical slowing fails for topological modes
down > First study easier systems like

Q( . . Laplace operator or Schwinger
Transfer to unseen configurations model
without retraining » Identify what is problematic about
— No costly setup topological modes

[& Handle topological modes nicely Explore models to generate

representative near-null space
vectors economically
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