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Background



Problem
statement

Bigger picture

▶ Lattice QCD calculations are
expensive

▶ One of the most expensive parts is
solving the Dirac equation

▶ Preconditioners can accelerate this

Preconditioners

▶ State of the art:
algebraic multigrid (AMG)

▶ But AMG needs costly setup

▶ Can this setup be avoided?

▶ Goal: Preconditioner competitive
with AMG, but with very little (or
even no) setup
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Status quo

[1] S. Cal̀ı et al., PRD 107, 034508 (2023)
[2] Y. Sun et al., arXiv:2509.10378 [hep-lat] (2025)
[3] C. Lehner and T. Wettig, PRD 108, 034503 (2023)
[4] C. Lehner and T. Wettig, PRD 110, 034517 (2024)

Previous work

▶ Exploratory studies with different
kinds of Machine Learning
models [1,2]

Shortcomings

▶ Focus on preconditioning the high
modes

▶ Multigrid coarse grid solver and
smoother were reformulated in a
learnable way [3]

▶ expensive AMG setup is still needed

▶ Prolongation and restriction
operators were translated into ML
language [4]

▶ no generalization to unseen
configurations
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https://doi.org/10.1103/PhysRevD.107.034508
http://arxiv.org/abs/2509.10378
https://doi.org/10.1103/PhysRevD.108.034503
https://doi.org/10.1103/PhysRevD.110.034517


Gauge
equivariance

▶ Gauge-equivariant transport of information
between adjacent lattice sites:
hop operator

Hpiφ(x) = U†
pi
(x − p̂i )φ(x − p̂i )

▶ Combining multiple hops leads to parallel
transports Tp along a path p

▶ weighted linear combinations of parallel
transports are gauge-equivariant

1̂
2̂

p

Tp = H1H2H1
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Machine
Learning



Network
Architecture

Dense linear (L) layer

▶ n spin-color fields
φ ∈ CLx×Ly×Lz×Lt×Nc×Ns

▶ build m linear combinations of the
input fields, with spin matrices
Wij ∈ CNs×Ns as weights:

ψi (x)
L
=

n∑
j=1

Wijφj(x)

Parallel Transport (PT) layer

▶ n spin-color fields
φ ∈ CLx×Ly×Lz×Lt×Nc×Ns

▶ apply a different parallel transport
p(i) to every input field:

ψi (x)
PT
= Tp(i)φi (x)
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Network
Architecture

L PT L PT L
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Choice of
PT paths

▶ 1-hop paths:

P =
{
Hp|p ∈ {±1,±2,±3,±4}

}
▶ long straight paths:

P =
{
Hn
p |p ∈ {±1,±2,±3,±4},
n ∈ {20, 21, . . . , Lp/2}

}
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Choice of
PT paths

Operator applications
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Score
function

Filter iteration count N

O
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▶ Standard choice:

C = ∥MDφ− φ∥2

with random field φ

▶ Filtered cost function:

C = ∥MDφ̃− φ̃∥2

where φ̃ is obtained through N
iterations of GMRES for Dφ = 0
with random initial guess

⇒ Stronger emphasis on the
low modes!
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Results



Gauge
configurations

1 doi.org/10.5281/zenodo.15018324
2 doi.org/10.5281/zenodo.17494829

83 × 16 ensemble1:

▶ Wilson action

▶ quenched, heat bath

▶ Wilson-clover Dirac operator

▶ configurations with topological
charge |Q| ∈ {0, 1, 2}

163 × 32 ensemble2:

▶ Wilson action

▶ quenched, HMC

▶ Wilson-clover Dirac operator

▶ configurations with topological
charge |Q| ∈ {0, 4}
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https://doi.org/10.5281/zenodo.15018324
https://doi.org/10.5281/zenodo.17494829


Training
cost

Training iteration

‖M
D
ϕ̃
−
ϕ̃
‖2
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Iteration
count
gain?

bare mass parameter

Ite
ra

tio
ns

83 × 16
|Q| = 0

−0.59 −0.58 −0.57 −0.56 −0.55 −0.54 −0.53

102

103

104

unpreconditioned MG
4 layers 8 layers
12 layers 16 layers

10 / 15



Critical
slowing
down

bare mass parameter
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▶ Dfine
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11 / 15



Critical
slowing
down

bare mass parameter

O
pe

ra
to

ra
pp

lic
at

io
ns

83 × 16
|Q| = 1

−0.56 −0.55 −0.54 −0.53

103

104

unpreconditioned MG
4 layers 8 layers
12 layers 16 layers

11 / 15



Critical
slowing
down
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Critical
slowing
down
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Critical
slowing
down
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Transfer
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Conclusion



Conclusion

Slides and code:
simon-pfahler.github.io

Goals

□✓Build a preconditioner using ML
that mitigates critical slowing
down

□✓Transfer to unseen configurations
without retraining
→ No costly setup

□✗ Handle topological modes nicely

Next steps
▶ Understand why the architecture

fails for topological modes
▶ First study easier systems like

Laplace operator or Schwinger
model

▶ Identify what is problematic about
topological modes

▶ Explore models to generate
representative near-null space
vectors economically
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https://simon-pfahler.github.io/permanent/LATTICE2025/LATTICE2025.html
https://simon-pfahler.github.io

