Using low-rank tensor formats to enable computations of cancer progression models in large state spaces

Simon Pfahler¹, Peter Georg¹, Y. Linda Hu², Stefan Vocht², Rudolf Schill^{2,3}, Andreas Lösch², Kevin Rupp^{2,3}, Stefan Hansch², Maren Klever⁴, Lars Grasedyck⁴, Rainer Spang², Tilo Wettig¹

 Θ_{33}

 $\Theta_{22}\Theta_{23}$

 $\Theta_{11}\Theta_{12}\Theta_{13}$

 $a^{(1)}$

 $\mathbf{a}^{(d)}$

¹Department of Physics, University of Regensburg ²Department of Informatics and Data Science, University of Regensburg ³Department of Biosystems Science and Engineering, ETH Zürich ⁴Institute for Geometry and Applied Mathematics, RWTH Aachen University

Scan for digital version

Summary

- Comprehensive cancer progression models should include a large number d of genomic events
- Mutual Hazard Networks model the progression process using only d² parameters [1]
 - \triangleright Computational complexity of a straightforward implementation still scales exponentially in d
- Calculations using 25 events are computationally infeasible [2]
 Tensor Trains allow for cost-effective storage and calculations for high-dimensional tensors
 This method reduces the computational complexity from exponential to polynomial in d

Tensor Trains for MHN

- Events are binary $\rightarrow n_k = 2$ for all mode sizes
- ▶ \mathbf{Q}_{Θ} can naturally be written as a Tensor Train [1]:

 \triangleright **Q**_⊖ is a sum of *d* rank-1 Tensor Trains \triangleright All TT-ranks of **Q**_⊖ are equal to *d*

Mutual Hazard Network (MHN) model

- MHN models tumor progression as a continuous-time Markov chain on the 2^d-dimensional state space of possibly active events [1]
- Events can only occur one at a time
- Transition rates are given by

 $\left(\mathbf{Q}_{\Theta} \right)_{\mathbf{x} \to \mathbf{x}_{+i}} = \underbrace{\Theta_{ii}}_{\text{base rate}} \prod_{\mathbf{x}_j=1} \underbrace{\Theta_{ij}}_{\text{influences}}$

- ► $\mathbf{Q}_{\Theta} \in \mathbb{R}^{2^{d} \times 2^{d}}$ is sparse, $\Theta \in \mathbb{R}^{d \times d}$ describes the model in compact form using only d^{2} parameters
- Time marginal probability distribution from Θ :

 $\mathbf{p}_{\Theta} = (\mathbf{Id} - \mathbf{Q}_{\Theta})^{-1} \mathbf{p}_{\varnothing} \qquad \mathbf{p}_{\varnothing} = (100\%, 0\%, 0\%, 0\%, \dots, 0\%)^{T}$

b Optimal Θ matrices are found by optimizing the time-marginalized Kullback-Leibler divergence from the given data distribution $\mathbf{p}_{\mathcal{D}}$:

$$S_{\mathsf{KL}}(\mathbf{p}_{\Theta}) = \sum (\mathbf{p}_{\mathcal{D}})_{\mathsf{x}} \log \left((\mathbf{p}_{\Theta})_{\mathsf{x}}
ight)$$

- $ightarrow \mathbf{p}_{arnothing}$ is a canonical unit Tensor Train, with all TT-ranks equal to 1
- ▶ \mathbf{p}_{Θ} and \mathbf{q} can be calculated in the TT format (max. TT ranks $r_{\mathbf{p}_{\Theta}}$ and $r_{\mathbf{q}}$)
- For gradients, each nonzero entry in $\mathbf{p}_{\mathcal{D}}$ has to be treated individually
 - \triangleright One linear equation has to be solved for each nonzero entry (usually \sim 1000)
 - > This can be parallelized trivially

Results: Runtime speedup

- Runtime for one score and gradient evaluation at Θ = independence model
- **p** $_{\mathcal{D}}$ constructed from 1000 random samples
- Runtime grows with $\sim d^{5.4}$ for large $d \Rightarrow$ polynomial growth!

Gradients can be calculated analytically:

$$\frac{\partial S_{\mathsf{KL}}}{\partial \Theta_{ij}} = \sum_{\mathbf{y}, \mathbf{z}} \underbrace{\sum_{\mathbf{x}} \frac{\partial S_{\mathsf{KL}}}{\partial (\mathbf{p}_{\Theta})_{\mathbf{x}}} (\mathsf{Id} - \mathbf{Q}_{\Theta})_{\mathbf{xy}}^{-1}}_{=:\mathbf{q}_{\mathbf{y}}} \left(\frac{\partial \mathbf{Q}_{\Theta}}{\partial \Theta_{ij}} \right)_{\mathbf{yz}} (\mathbf{p}_{\Theta})_{\mathbf{z}}$$

KL divergence and gradient calculation time is dominated by solution time of two linear equations:

$$\left(\mathsf{Id} - \mathsf{Q}_{\Theta}\right)\mathsf{p}_{\Theta} = \mathsf{p}_{\varnothing} \qquad \left(\mathsf{Id} - \mathsf{Q}_{\Theta}\right)^{\mathsf{T}}\mathsf{q} = \frac{\partial S_{\mathsf{KL}}}{\partial \mathsf{p}_{\Theta}}$$

Tensor Train (TT) representation

A *d*-dimensional tensors $\mathbf{a} \in \mathbb{C}^{n_1 \times ... \times n_d}$ can be written as a product of *d* Tensor Train cores $\mathbf{a}^{(k)} \in \mathbb{C}^{r_{k-1} \times n_k \times r_k}$:

$$\mathbf{a} = \mathbf{a}^{(1)} \circ \ldots \circ \mathbf{a}^{(d)}$$

- $\bm{X} \circ \bm{Y}$ denotes contraction of last index of \bm{X} with first index of \bm{Y}
- Similar for operators $\mathbf{A} \in \mathbb{C}^{(m_1 \times ... \times m_d) \times (n_1 \times ... \times n_d)}$: TT cores $\mathbf{A}^{(k)} \in \mathbb{C}^{r_{k-1} \times m_k \times n_k \times r_k}$
- Storage cost is reduced from exponential to linear in d, but additional dependency on TT ranks r_k is introduced
- Many arithmetic operations can be performed directly in the TT format, reducing the computational complexity [3]:

Results: Accuracy of the TT solution

 \blacktriangleright KL divergence from exact result to TT solution after full optimization of Θ

 $\begin{array}{l} \triangleright \text{ Superposition } \lambda \mathbf{a} + \nu \mathbf{b}: & \mathcal{O}(dn(r_{\mathbf{a}} + r_{\mathbf{b}})^2) \\ \triangleright \text{ Inner product } \langle \mathbf{a}, \mathbf{b} \rangle: & \mathcal{O}(dnr_{\mathbf{a}}r_{\mathbf{b}}(r_{\mathbf{a}} + r_{\mathbf{b}})) \\ \triangleright \text{ Operator-by-Tensor product } \mathbf{Ab}: & \mathcal{O}(dmn(r_{\mathbf{A}}r_{\mathbf{b}})^2) \end{array} \right\} \begin{array}{l} n \coloneqq \max(n_k) \\ m \coloneqq \max(m_k) \\ r_{\mathbf{X}} \coloneqq \max((r_{\mathbf{X}})_k) \\ r_{\mathbf{X}} \coloneqq \max((r_{\mathbf{X}})_k) \end{array}$ $\begin{array}{l} \text{Linear equations } \mathbf{Ax} = \mathbf{b} \text{ can also be solved efficiently directly in this format} \end{array}$

References

- R. Schill, S. Solbrig, T. Wettig, and R. Spang, Modelling cancer progression using Mutual Hazard Networks, Bioinformatics 36 (January, 2020) 241.
- P. Georg, L. Grasedyck, M. Klever, R. Schill, R. Spang, and T. Wettig, *Low-rank tensor methods for Markov chains with applications to tumor progression models, Journal of Mathematical Biology* 86 (December, 2022).
- [3] P. Georg, *Tensor Train Decomposition for solving high-dimensional Mutual Hazard Networks*, PhD thesis, Universität Regensburg, October, 2022.

2 4 6 8 10 12 14 16 18 20 22

number of events d

Code availablility

C++ library for TT-calculations pRC: gitlab.com/pjgeorg/pRC
 Application-specific C++ library cMHN that utilizes pRC for MHN-calculations: soon to be open-source

Future improvements

Reduce runtime by accelerating solution of linear equations in TT format
 Include formation of metastases in the model

Supported by the German Research Foundation (DFG)

Correspondence: simon.pfahler@ur.de