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Summary

Comprehensive cancer progression models should include a large number d of
genomic events
Mutual Hazard Networks model the progression process using only d2

parameters [1]
Computational complexity of a straightforward implementation still scales
exponentially in d
Calculations using & 25 events are computationally infeasible [2]

Tensor Trains allow for cost-effective storage and calculations for
high-dimensional tensors

This method reduces the computational complexity from exponential to
polynomial in d

Mutual Hazard Network (MHN) model

MHN models tumor progression as a continuous-time Markov chain on the
2d-dimensional state space of possibly active events [1]
Events can only occur one at a time
Transition rates are given by(

QΘ

)
x→x+i

= Θii︸︷︷︸
base rate

∏
xj=1

Θij︸︷︷︸
influences

QΘ ∈ R2d×2d is sparse, Θ ∈ Rd×d describes the model
in compact form using only d2 parameters
Time marginal probability distribution from Θ:

pΘ = (Id − QΘ)
−1 p∅ p∅ = (100%, 0%, 0%, . . . , 0%)T

Optimal Θ matrices are found by optimizing the time-marginalized
Kullback-Leibler divergence from the given data distribution pD:

SKL(pΘ) =
∑

x
(pD)x log ((pΘ)x)

Gradients can be calculated analytically:
∂SKL
∂Θij

=
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y,z

∑
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∂SKL
∂ (pΘ)x

(Id − QΘ)
−1
xy︸ ︷︷ ︸

=:qy

(
∂QΘ

∂Θij

)
yz
(pΘ)z

KL divergence and gradient calculation time is dominated by solution time of two
linear equations:

(Id − QΘ)pΘ = p∅ (Id − QΘ)
T q =

∂SKL
∂pΘ

Tensor Train (TT) representation

A d-dimensional tensors a ∈ Cn1×...×nd can be written as a product
of d Tensor Train cores a(k) ∈ Crk−1×nk×rk:

a = a(1) ◦ . . . ◦ a(d)

X ◦ Y denotes contraction of last index of X with first index of Y
Similar for operators A ∈ C(m1×...×md)×(n1×...×nd):
TT cores A(k) ∈ Crk−1×mk×nk×rk

Storage cost is reduced from exponential to linear in d ,
but additional dependency on TT ranks rk is introduced
Many arithmetic operations can be performed directly in the TT format, reducing
the computational complexity [3]:

Superposition λa + νb: O
(
dn(ra + rb)

2)
Inner product 〈a,b〉: O

(
dnrarb(ra + rb)

)
Operator-by-Tensor product Ab: O

(
dmn(rArb)

2)
Linear equations Ax = b can also be solved efficiently directly in this format
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Tensor Trains for MHN

Events are binary → nk = 2 for all mode sizes
QΘ can naturally be written as a Tensor Train [1]:

QΘ =
d∑

i=1

( i−1⊗
j=1

(
1 0
0 Θij

)
︸ ︷︷ ︸
∈R1×2×2×1

⊗
(
−Θii 0
Θii 0

)
︸ ︷︷ ︸
∈R1×2×2×1

⊗
d⊗

j=i+1

(
1 0
0 Θij

)
︸ ︷︷ ︸
∈R1×2×2×1

)

QΘ is a sum of d rank-1 Tensor Trains
All TT-ranks of QΘ are equal to d

p∅ is a canonical unit Tensor Train, with all TT-ranks equal to 1
pΘ and q can be calculated in the TT format (max. TT ranks rpΘ

and rq)
For gradients, each nonzero entry in pD has to be treated individually

One linear equation has to be solved for each nonzero entry (usually ∼1000)
This can be parallelized trivially

Results: Runtime speedup

Runtime for one score and gradient evaluation at Θ = independence model
pD constructed from 1000 random samples
Runtime grows with ∼d5.4 for large d ⇒ polynomial growth!
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Results: Accuracy of the TT solution

KL divergence from exact result to TT solution after full optimization of Θ
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Code availablility

C++ library for TT-calculations pRC: gitlab.com/pjgeorg/pRC
Application-specific C++ library cMHN that utilizes pRC for MHN-calculations:
soon to be open-source

Future improvements

Reduce runtime by accelerating solution of linear equations in TT format
Include formation of metastases in the model
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