Using low-rank tensor formats to enable computations of cancer progression models in large state spaces

Simon Pfahler¹, Peter Georg¹, Y. Linda Hu², Stefan Vocht², Rudolf Schill^{2,3}, Andreas Lösch², Kevin Rupp^{2,3}, Stefan Hansch², Maren Klever⁴, Lars Grasedyck⁴, Rainer Spang², Tilo Wettig¹

 Θ_{33}

- \triangleright Q_Θ is a sum of d rank-1 Tensor Trains
- **Tensor Trains allow for cost-effective storage and calculations for** high-dimensional tensors
	- \triangleright This method reduces the computational complexity from exponential to polynomial in d

- MHN models tumor progression as a continuous-time Markov chain on the 2^d -dimensional state space of possibly active events $[1]$
- Events can only occur one at a time
- **Transition rates are given by**

Summary

- Comprehensive cancer progression models should include a large number d of genomic events
- Mutual Hazard Networks model the progression process using only d^2 parameters [\[1\]](#page-0-0)
	- \triangleright Computational complexity of a straightforward implementation still scales exponentially in d
	- Calculations using \gtrsim 25 events are computationally infeasible [\[2\]](#page-0-1)

- $\mathbf{Q}_{\Theta} \in \mathbb{R}^{2^{d} \times 2^{d}}$ is sparse, $\Theta \in \mathbb{R}^{d \times d}$ describes the model in compact form using only d^2 parameters
- Time marginal probability distribution from Θ:

 $\mathbf{p}_{\Theta} = \left(\mathbf{Id} - \mathbf{Q}_{\Theta}\right)^{-1}\mathbf{p}_{\varnothing} \qquad\qquad \mathbf{p}_{\varnothing} = \left(100\%, 0\%, 0\%, \ldots, 0\% \right)^T$

Optimal Θ matrices are found by optimizing the time-marginalized Kullback-Leibler divergence from the given data distribution $\mathbf{p}_{\mathcal{D}}$:

> $S_{\mathsf{KL}}(\mathbf{p}_{\Theta}) = \sum (\mathbf{p}_{\mathcal{D}})_{\mathsf{x}} \log ((\mathbf{p}_{\Theta})_{\mathsf{x}})$ **x**

KL divergence and gradient calculation time is dominated by solution time of two linear equations:

Mutual Hazard Network (MHN) model

 Q^Θ $\mathsf{x} \rightarrow \mathsf{x}_{+i}$ $=$ Θ_{ii} \sim base rate Π x_{j} =1 Θ_{ij} \sum influences

- [1] R. Schill, S. Solbrig, T. Wettig, and R. Spang, Modelling cancer progression using Mutual Hazard Networks, Bioinformatics **36** [\(January, 2020\) 241.](https://epub.uni-regensburg.de/41407/)
- [2] P. Georg, L. Grasedyck, M. Klever, R. Schill, R. Spang, and T. Wettig, Low-rank tensor methods for Markov chains with applications to tumor progression models, [Journal of Mathematical Biology](https://epub.uni-regensburg.de/53428/) **86** [\(December, 2022\).](https://epub.uni-regensburg.de/53428/)
- [3] P. Georg, Tensor Train Decomposition for solving high-dimensional Mutual Hazard Networks, PhD thesis, Universität Regensburg, October, 2022.

Gradients can be calculated analytically:

- All TT-ranks of **Q**^Θ are equal to d
- **▶ p**⊗ is a canonical unit Tensor Train, with all TT-ranks equal to 1
- \mathbf{p}_{Θ} and \mathbf{q} can be calculated in the TT format (max. TT ranks $r_{\mathbf{p}_{\Theta}}$ and $r_{\mathbf{q}}$)
- For gradients, each nonzero entry in \mathbf{p}_D has to be treated individually
	- \triangleright One linear equation has to be solved for each nonzero entry (usually \sim 1000)
	- \triangleright This can be parallelized trivially

$$
\frac{\partial S_{KL}}{\partial \Theta_{ij}} = \sum_{\mathbf{y},\mathbf{z}} \sum_{\mathbf{x}} \frac{\partial S_{KL}}{\partial (\mathbf{p}_{\Theta})_{\mathbf{x}}} (\mathbf{Id} - \mathbf{Q}_{\Theta})_{\mathbf{x}\mathbf{y}}^{-1} \left(\frac{\partial \mathbf{Q}_{\Theta}}{\partial \Theta_{ij}} \right)_{\mathbf{y}\mathbf{z}} (\mathbf{p}_{\Theta})_{\mathbf{z}}
$$

=:**q^y**

$$
(\mathbf{Id} - \mathbf{Q}_{\Theta}) \mathbf{p}_{\Theta} = \mathbf{p}_{\emptyset} \qquad (\mathbf{Id} - \mathbf{Q}_{\Theta})^T \mathbf{q} = \frac{\partial S_{\mathsf{KL}}}{\partial \mathbf{p}_{\Theta}}
$$

Tensor Train (TT) representation

A d-dimensional tensors $a \in \mathbb{C}^{n_1 \times ... \times n_d}$ can be written as a product of *d* Tensor Train cores $a^{(k)} \in \mathbb{C}^{r_{k-1} \times n_k \times r_k}$:

$$
\mathbf{a} = \mathbf{a}^{(1)} \circ \ldots \circ \mathbf{a}^{(d)}
$$

- **X Y** denotes contraction of last index of **X** with first index of **Y** α_{k-1}
- Similar for operators $A \in \mathbb{C}^{(m_1 \times ... \times m_d) \times (n_1 \times ... \times n_d)}$: TT cores $\mathbf{A}^{(k)} \in \mathbb{C}^{r_{k-1} \times m_k \times n_k \times r_k}$
- Storage cost is reduced from exponential to linear in d , but additional dependency on TT ranks r_k is introduced
- Many arithmetic operations can be performed directly in the TT format, reducing the computational complexity [\[3\]](#page-0-2):

References

Tensor Trains for MHN

- Events are binary $\rightarrow n_k = 2$ for all mode sizes
- **▶ Q e** can naturally be written as a Tensor Train [\[1\]](#page-0-0):

Results: Runtime speedup

- Runtime for one score and gradient evaluation at $\Theta =$ independence model
- **P** $_D$ constructed from 1000 random samples
- Runtime grows with $\sim d^{5.4}$ for large $d \Rightarrow$ **polynomial growth!**

Results: Accuracy of the TT solution

KL divergence from exact result to TT solution after full optimization of Θ

2 4 6 8 10 12 14 16 18 20 22

Superposition λ **a** + ν **b**: $\mathcal{O}(dn(r_a + r_b)^2)$ $n = max(n_k)$ $\mathcal{O}(dnr_{\mathbf{a}}r_{\mathbf{b}}(r_{\mathbf{a}} + r_{\mathbf{b}}))$ Operator-by-Tensor product $Ab: \mathcal{O}(dmn(r_A r_b)^2)$ \blacktriangleright Linear equations $Ax = b$ can also be solved efficiently directly in this format $m \coloneqq \max\left(m_k\right)$ $r_{\mathbf{X}} \coloneqq \max\left((r_{\mathbf{X}})_k\right)$

number of events d

Code availablility

C**++** library for TT-calculations pRC: gitlab.com/pjgeorg/pRC Application-specific C**++** library cMHN that utilizes pRC for MHN-calculations: soon to be open-source

Future improvements

Reduce runtime by accelerating solution of linear equations in TT format Include formation of metastases in the model

Supported by the German Research Foundation (DFG) Correspondence: simon.pfahler@ur.de

Scan for [digital version](https://sirviv0r.github.io/permanent/ISMB2023/poster_ISMB2023.html)

· · ·

 \blacktriangleright $\Theta_{22}\Theta_{23}$

 $\Theta_{11}\Theta_{12}\Theta_{13}$

a (1)

 α_1

 $i₁$

 $i₂$

 i_d

 α_2

 α_{d-1}

a (2)

 $\mathbf{a}^{\left(d\right)}$

 $\mathbf{A}^{(k)}$

 α_k

ik

¹Department of Physics, University of Regensburg ²Department of Informatics and Data Science, University of Regensburg ³Department of Biosystems Science and Engineering, ETH Zürich ⁴Institute for Geometry and Applied Mathematics, RWTH Aachen University

jk